Rabu, 01 Mei 2013

FUNGSI EKSPONEN DAN LOGARITMA


FUNGSI EKSPONEN DAN LOGARITMA

A.   EKSPONEN
     1.    Kurva Fungsi Eksponen

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg2wNBUUp-eJhyphenhyphenZlHo85soqQ7YilDi7_d78uBbL0vPmLFE7w1WpqB3Bvl6x4_j_6llCStTaQYQl0sVzgJRsXW922YMFEBX1Wz0Gvrxp_Vt3rX93pyEnRPzLNk56Nn7evUIUAmEku2uHHyUg/s1600/a1.png
        2.    Sifat-sifat
 
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEioYGofqBO5X2WVrsPHkNdP4UPFBaliZ6RyAyF6jEfJ8pYz7UdkWgfUu7PlYdHduT3FdmoSvMNyCuZwobVY4DEy0o4cNhQvuPBkBs3NG8g1ZV9osq4IvWqcOlmLl9r3DuPvOjwcmEbYkgoo/s1600/a2.png
 
      3.    Persamaan Eksponen
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiVr9Mfj38HlK318L1NXX6tWQVddkHXViZOhM-sJxz2f4xS_BarMqi-FIAEGwWqXvcRV7uNwqLL1KVxZJA1SrOIK6QXI7MK1AOFV7FRgtGaTf3Ch4AZNLBrZb9jnVsxmzJUSqQtSKWHMZGy/s1600/a3.png
         
           Contoh :
           2x + 3 = 1/42x – 3 ,tentukan nilai x.
          Jawab :
          2x + 3 = (2-2)2x – 3
                  = 2 -4x + 6
          x + 3 = -4x + 6
              7x = 3                                                  
                x = 3/7
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEglHTmPyWnQO0wX143Vv25KI5If-HofaCgWxRWxwLyHAunHM0mH_cwrBPEnHFDRCTz4cER0y5x2nM2vgw8FeGTMLB6vRBD0MaMiZVPPGUn_8a3x2FHXN9CNAATq9Xmff_efl8hCUkG3_Ytc/s1600/a4.png

           Contoh :
           32x – 7 = 42x – 7 ,tentukan nlai x.
           Jawab :
            2x – 7 = 0
                   x = 7/2 = 3 ½


https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgH0P4kkH4qZkJNczOttuhnPEp5uTVu9MRccrPgnSZI2zWJu6ZjNtbwM0Klkg6jYATC8dPBH3NrrnVs01KSEKDjHJlt5SeyF_dQJOhy_q1ppEHK8mBaSpD3EWvQCpF72yIqR70nU48B2EL7/s1600/a5.png

            Contoh :
            3x – 2 = 22x + 1 ,tentukan nilai x.
            Jawab :
             log 3x – 2 = log 22x + 1
        (x – 2) log 3 = (2x + 1) log 2
   x log 3 – 2 log 3 = 2x log 2 + log 2
 x log 3 – 2x log 2 = log 2 + 2 log 3
 x (log 3 – 2 log 2) = log 2 + log 9
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgHncsQ2XZvylhqlHMXH6CGzIH9rxfIHuV1sKBfDjerJ8KWo1QUE_V4EN8kClhHbvFHL8yzwQjnsRcYulWSHqEqRz0l0YVvNwMkAf9v_EblbLFoYV4LJEkjHCFS0TksxUORD_zh0TPGS4_y/s1600/a6.png 

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEixFJ-PYKiTO-3l8cBQtJOGLwbY3VEMer6vD8IaIe-ZXlOav0ksdvmCXG59g9U7JiGpRlX7z_e_Sh_ztVY65cC-iLu74oJTnCSyMf-OdqGY8b1q1vRb7ObQBxk81K0abRBDQ2VToE7DT6lI/s1600/a7.png
 Ada beberapa kemungkinan :
      1)    g(x) = h(x)
      2)    f(x) = 1
      3)    f(x) = -1     dengan syarat : g(x) dan h(x) keduanya genap
                                   atau         : g(x) dan h(x) keduanya ganjil
      4)    f(x) = 0     dengan syarat : setelah ketemu nilai x dan di masukkan ke dalam persamaan di atas di dapatkan : g(x) > dan h(x) > 0
          Contoh :
          (2x – 3)x + 2 = (2x – 3)3x – 2 ,tentukan nilai x.
          Jawab :
          1.    x + 2 = 3x – 2
                 -2x = -4
                    x = 2
         2.    2x – 3 = 1
                   2x = 4
                     x = 2
         3.    2x – 3 = -1
                    2x = 2
                      x = 1  →  (-1)1 + 2 = (-1)3 – 2
                                          (-1)3 = (-1)1
                                              -1 = -1       (terpenuhi)
          4.    2x – 3 = 0
                     2x = 3
                      x = 3/2
                x + 2 = 3/2 + 2 = 3 ½ > 0          (terpenuhi)
              3x – 2 = 3(3/2) – 2 = 2 ½ > 0
              Jadi nilai x = 2 , 1 dan 1 ½

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj0rMC5-P8QnAiWBrsk71OKu56xQgw2TTyfYD-C27cImg9jXqO2lxzWZo82tUz_7s6J2XQWBNI_E7Gc5EDlz7YZXD2xDreng3eGJSH8L7wIweesbJcgqbqnM_18uqUiWcJlqEPgj4H7w0qi/s1600/a8.png
           Misal : pf(x) = y
           Persamaan menjadi : ay2 + by + c = 0
           Misalnya akar-akarnya y1 dan y2
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjNorAo1lyCIP0arpizEpQE8F2caiBqWnhXFxS9o4rFzFVSlbRBmEyf-oWVNJui0kk2nia7SpVq9ewyQve840rQpXAY3ujl-kCb8SDSxD_NzTHEplAkXewBVoxCevFjMOAAE79Oi9O7gm_g/s1600/a9.png




          Contoh :
          Tentukan nilai x yang memenuhi persamaan 4x – 10 . 2x + 24 = 0.
          Penyelesaian :
          4x – 20 . 2x + 64 = 0
         22x – 20 . 2x + 64 = 0
         Misal :
            y = 2x ,maka :
           y2 – 20y + 64 = 0
        (y – 4) (y – 16) = 0
           y = 4 atau y = 16
         ●  jika y = 4 ,maka 2x = 4
                                       x = 2
         ●  jika y = 16 ,maka 2x = 16
                                         x = 4
4.    Pertidaksamaan Eksponen

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjrvZbPx1jEg0XBBPbTRpcrxG5fpPw2OrxLJ5_2t_MXdBCWyOznNOwZa2gnJUr4_hmNvYvv8Dj4jlJjyb5EF7DAULg35Yp-IC_2mDMm1AF4Z9I54yQ4CER1lr3NbciF3NkGmNGkO9J8UEgt/s1600/a10.png

    Contoh :
    2x + 3 < (1/8)2x – 3 ,tentukan nila x.
    Jawab :
      2x + 3 < (2-3)2x – 3
      2x + 2 < 2-6x + 9
      x + 2 < -6x + 9
          7x < 7 → x < 1

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgfAhKgj3pZmP7bL0Fs3qXgQ6uwi-rud0WriAep3SoXdybOzi4BuVGhECgf240tSnSKzu2m1PQVkVyrwsRVwk4zSMqU6RAsJ7DGDPxxV2scgom3TryYAue10dnw17_cijOkxdqLdYdLfNRQ/s1600/a11.png
 
        Misal : pf(x) = y
        →   ay2 + by + c < 0
                                  > 0
 
Y1            y2

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgX23Mb5XapTPQPvjnPIOKo3ECGDs8CbXE4WfgrLdDNyCGxUw9gOsOdSLFOVLkbejeKyqsXN-0L8uOyGzy7qPsSflmbu-hHFjvIC-341dPZrlh_ThUE09TF3NNUjMv-AyZ6Y80ObkQCswnA/s1600/a12.png








   
Contoh :
Tentukan penyelesaian nilai x yang memenuhi pertidaksmaan 22x – 3 . 2x – 1 + 8 < 0
Penyelesaian :
    ● 22x – 3 . 2x – 1 + 8 < 0
       22x – 3 . 2x . 21 + 8 < 0
      Misal : p = 2x ,maka :
      p2 – 6p + 8 < 0
     (p – 2) (p – 4) < 0

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhHE4KCHVazAxaCows1QagSk1ueVDTx86TDd6ec-aflAVjQwVmC06Y-3mRkj1orxUEi5oU4wjFp4VYLnN_W-7UdSQbYkH5F9ScuWoF2AxVih0mqUsbCZCKivlAr_LP5mhL34DqPdOxI43lA/s1600/a13.png 


      2 < p < 4
      2 < 2x < 22
      1 < x < 2

B.   LOGARITMA
    1.    Pendahuluan
    Bentuk umum fungsi logaritma adalah :

        y = alog x
        Dimana : a = bilangan pokok/basis
                      x = bilangan yang di logaritmakan/numerous
         Syarat : a > 0 , a ≠ 1 dan
                     x > 0
     2.    Kurva Fungsi Logaritma

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhA8rTjZRLXWdEvPz5e0m6CjOBRDTskAnJZiax5VQMCegjgbKVHisPZ5Zjsdx41xW_U0akahHwyuV1p3qWdomSB7zMInJ3mkscuwR0_qfwBgnyfBC4yAysmhBsNGtjvtYrSRXnonInHE8XI/s320/a14.png
 
      3.    Sifat-sifat
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgi6vSUZnrNrOdl1W9R0Pz-lSJAI7L8tA7XhyphenhyphenJgyWxOVAhDyvU6em_PMkCekjzQ5zZh5ev8ecGzCf4Hl8wZgjEZi53n6ftfVhkGwL3zYZ30tJKkNCtOaCZerxo-uwUVzfrS0mNYSO8DlFNB/s1600/a15.png

             Contoh :
             1)    Hitunglah nilai :
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEivkAmsaxmYpSx9BcouOFLhQW1KFNEobTVuB4Ln2BCq-JMF-AEtfYojxw41vikZFHHDT4S6yV_Fv7DchaK5I6AbxlJtrriyztlPg0Udz-7bh1lV1CByb8WGJlMDS7PEYIOoC4xn2L1TFBOc/s1600/b1.png
                  Jawab :
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjsMhd2lZIZ2-W2bpu75W4O2yhkIK4xxqQWhhPhNxYpsuSJrsrKCmkNYYPp5uTVWH1vWZzBdJyd1d9s87UoSxwBwKn8UXcLyRvDepS9zM9_2m5th6j_qvQZU6Ia7J2XOFJEL05H2dIBDmp4/s1600/b2.png
             2)    Jika log 2 = a dan log 3 = b ,nyatakan 6log 24 sebagai fungsi a dan b.
                  Jawab :
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgLGjq6x1ejKcnHPCboEtvsrlk5bOAoNfGSTJ6eFi9RojyEebdl-G48Ll83cb50gF3wX3fMjHK5fWN837ZDmxvUkPm4Ada3A5lOVONe8ppwhEjU6GzgpqKfPTYAVavH5ni0DfIXs7sb_ash/s1600/b3.png

       4. Persamaan Logaritma
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhfn60DFLKmnrHBcNi_RyK4jDvMwpD-1m72JYlGtKlmg6bZSB_UXs7x0l0NUASyPASs0DvVTzlAjIXPqDwtYq5lZGCsDMW3LVfQGk8mjnAGhb5mef2xe9xfGEVhWpF6aTMXtGhnyRL0cL3_/s1600/b4.png
 
            Contoh :
                  2log (x – 1) = 4log (3x – 3). Tentukan nilai x.
           Jawab :
                  2log (x – 1) = 4log (3x – 3)
                  4log (x – 1)2 =4log (3x – 3)
               x2 – 2x + 1 = 3x – 3
                x2 - 5x + 4 = 0
                 (x – 1) (x – 4) = 0
                    x = 1 (tidak memenuhi) ,ingat syarat.
                    x = 4

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgzH0nUhfVA76wz-9RUjSADcqqqY3YidGJQwDYO8W3OZfoHyAhbleGzB6ZkpeYx4QArACbdYCFxoiAWITsb-xtzk3-KFkUK8oJfFxL25zN01ZpsA8iOWSvbiGRMNXu77f3gSBHA0l3q9gMq/s1600/b5.png
  
                       Contoh :
                        (2x – 1) log (3x – 2) = (2x – 1) log (4x – 4)
                                             3x – 2 = 4x – 4
                                                   -x = 2
                                                    x = 2

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhvcVVsrQEuu9wsH60W2X9ubVc_WYHJq3GO27iqNoWZxhM_t4xRmggsNXTd9QroJE8r8pd9CuH_gM1WjprU0696yrn-MzaeQJUTyvWkeUUEuqr9aGx_vYVeO2GyVc0tYIiBddDf2DI75zg7/s1600/b6.png
                          

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiYdbjSA2yMyJxi6V_uj7Uou6UB7x1kr6halZxc1tWze_1zARPsphK761cKA7DD1kyyliwah25i-VdUqCxQWL6ZhGlHw0zAnkcd__eOJmhgsHanQU1pfIRyilrL8nigZwCmMkjg5U1u7rfu/s1600/b7.png
 
                  Contoh :
                  Tentukan nilai x yang memenuhi persamaan 2log 2x – 3 2log x + 2 = 0
                  Peyelesaian :
                  Misal : p = 2log f(x) ,maka persamaan di atas menjadi
                  p2 – 3p + 2 = 0
                  (p – 1) (p – 2) = 0
                   p = 1 atau p = 2
                  ● jika p = 2 ,maka 2log x = 2
                                                    x = 4
                  ● jika p = 1 ,maka 2log x = 1
                                                    x = 2
      5. Pertidaksamaan Logaritma 

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjO7xDvOVJnmrIfmxhn0RWj8doFekgoECPN_LXB2KX44iOX9QsIY_JD3_mQCvy6C9SadNlFLq6Aeimi-s1nYpjmnRjc8yzac0cVxLlvtmWPNxBpaVgJTgOIzNxxss5u7jYPCFf7sXTIsNyC/s1600/b8.png
 
               Contoh :
                Tentukan nilai x yang memenuhi pertidaksamaan 1/2log (3x – 2) > 2
              Penyelesaian :
                        1/2log (3x – 2) > 2
                        1/2log (3x – 2) > 1/2log (1/2)2
                        1/2log (3x – 2) > 1/2log ¼
                             3x – 2 < ¼
                                   3x < 2 ¼
                                   3x < 9/4
                                    x  < ¾ ..................................... (1)
                          ● syarat : 3x – 2 > 0 →  x > 2/3 .......... (2)
                          ● 1 ∩ 2

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEikWW0PKnWBgugSp82fgkDL3EyVdJUGbgWtmAz-c9GwvYndy89PsSqt-wj1-Lc_0F_MoQ5j04zxjZx3XZpl6i-bTbgg3ItMKoulbu9dY-HVgPeguKkEbe515BTpaDuKeA94V11WEZKMq8pw/s1600/b9.png


https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhs69KewxLVMLNgnf1TYs3e_QPl_K1A5pyMtoi477n_T6gpWTzkc0if9QpGpaQEL5wVKGIAPKOzUAEDOV2Mi9pmmj_gpOHx3EuyxGkRFJo1r6iOI28RDOrIOJ6i9WhJf_NyxKYnp7ZRAdr7/s320/b10.png
 
                     Contoh :
                                2log2 (x – 3) – 12 . 2log (x – 3) + 32 < 0 ,tentukan nilai x.
                     Jawab :
                        Misal : 2log (x – 3) = y
                                 y2 – 12y + 32 < 0
                                 (y – 4) (y – 8) < 0

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhtO2RR55OH-7ioyve1lQ1B1XmlDhFlLJ8mpr_LdeSBFS7VoFnteRBHbC3YYAWScwoy3ZRF812XyOFXK28LST7t6atkMK2_GKclG34g2wk7lqiPvDGvEpImUVpYPZ2vmvny1JdNbt_m7S2r/s1600/b11.png
                                 
                                  4 < y < 8
                                  4 < 2log (x – 3) < 8
                                  2log 16 < 2log (x – 3) < 2log 256
                                 16 < x - 3 < 256
                                      19 < x < 256 ................... (1)
                               ● syarat : x – 3 > 0
                                              x > 3 .............. (2)
                               ● 1 ∩ 2 : 19 < x < 259


Tidak ada komentar :

Posting Komentar